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Abstract The development of theoretical ideas on the cause and the mechanism of
the change of activity coefficients is the main aim of the investigation. The model
describing the interaction of hydrated ions in electrolytes is proposed. In the model
the electrostatic forces between ions and change of the energy of the hydrate shell in
the process of ion convergence determine ions distribution in solution. The significant
factor is the dependence of dielectric permittivity on the concentration of the electrolyte
and on the distance to ion. The statistical approach developed allows one to calculate
the influence of principal physical factors and, on this basis, to explain the nature of
curves describing the activity coefficients. The results of simulation have been tested
on a large number of experimental data.

Keywords Activity coefficients · Statistical approach · Electrostatic potential ·
Energy of the hydrate shell
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U = �/kT, U0 = limM→0 U (dimensionless)
v The total volume of attraction zones around N negative ions,

v0 = limM→0 v (l/mol)
γ The activity coefficient (dimensionless)
a The radius of the stable part of the hydrate shell around the “central”

ion in the statistical model; approximately corresponds to the distance

of the closest approach of ions (Ǻ)
ψ, u = qψ

kT The electrostatic potential (J/C)
W, w = W

kT The correction to the potential energy of the positive ion due to the
change of the energy of the hydrate shell (J)

φ = qψ + W The potential energy of a positive ion with hydrate shell (J)
〈�〉 The average value of� in the spherical layer, subject to the probability

of finding charges in the layer (dimensionless)
εw The dielectric permittivity of water (dimensionless)
ε The local value of the dielectric permittivity (dimensionless)
εa The average value of ε in the solution in the domain r > a

(dimensionless)
d The dipole moment of the molecule of water (C · Ǻ)

1 Introduction

The activity coefficients in solutions have been extensively examined in many studies.
In the case of small concentrations of solutions, there exist well-developed theories
explaining laws of variation of the activity coefficients against the concentration of
solutions, namely, the Debye–Hückel theory and subsequent refinements of it proposed
by other authors. For large concentrations, several approaches were developed for
calculation of the activity coefficients in a fairly wide range for many electrolytes, for
example, the approaches of K. Pitzer [1], R. Robinson and R. Stokes [2], L. Bahe [3],
E. M. Kuznetsova [4], and others.

The study of the activity coefficients has two aspects. The values of the coefficients
for different concentrations of the solution are needed for the calculation of equilibrium
between the components. For this purpose, one can use formulas and summaries of
the parameters obtained in the works of various authors.

At the same time, tables of the coefficients contain significant and reliable infor-
mation. Using mathematical modeling, based on this material, one can analyze and
study the physical aspects of processes occurring in electrolytes. Not only the activity
coefficients themselves are of interest, but also understanding of how these values are
produced. In this aspect, these approaches, possessing undoubted achievements, are
not without drawbacks.

The Debye–Hückel theory describes what happens in electrolytes at very low
concentrations. K. Pitzer used a direct selection of a large number of parameters
for the curves of the activity coefficients, up to 8 in a mixture of two electrolytes.
E. M. Kuznetsova derived formulas for the calculation of the activity coefficients in a
wide range of concentrations. These formulas adequately describe the final result but
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raise questions regarding the physical justification. Among them, the main problem is
as follows: in the calculation of the energy, a significant contribution of the interaction
of hydrate shells of ions is not considered. We believe that the development of theo-
retical ideas on the cause and the mechanism of the change of activity coefficients at
concentrations in the range from about 0.1 to several moles per liter, requires further
examination.

In this paper, we propose a model in which the choice of functions is determined
by the physics of the process. The model allows one to describe the activity coeffi-
cients of univalent electrolytes in this range of concentrations. We also compare the
results obtained with data published earlier and substantiate principles used in our
constructions.

2 Model for the case of uni-univalent strong electrolyte

Assume that a solution contains M moles of a chemical substance AB per volume V
(i.e., the molar concentration is C = M/V ). In the solution, an equilibrium A++B− �
AB is established. Here A+ and B− are unbound ions and AB is an interacting pair,
which can have a different nature depending on the energy of interaction. Namely, if the
ions A+ and B− approach, then the energy of the system decreases due to the Coulomb
attraction of the ions, but to join them in a molecule, the energy of hydration of the ions
must be overcome. If the energy of hydration is greater, the ions cannot “undress” and
remain a weakly coupled pair. This situation is typical for strong electrolytes discussed
in this paper.

Denote by A and B the number (in moles) of the ions A+ and B−, respectively.
We consider the process based on the following model concept. For the ions A+, we
divide the volume of the solution into two energy zones. The first zone, called the
attraction zone, is a collection of small domains centered at the ions B−, free or bound
with A+. We denote by v the sum of the volumes of these domains around N ions B−,
where N is the Avogadro constant. The remaining volume of the solution is called the
free zone. The average energy of an ion A+in the attraction zone is less than in the
free zone by a certain amount denoted by �; we denote �/kT by U (U < 0). We
assume that the size of the attraction zone in such that the value of U is minimal. In
other words, the size is such that the difference between the energies in the attraction
zone and the free zone is most strong.

We denote the concentration of the ions A+ in the free zone by θ . By the Boltzmann
law, their average concentration in the attraction zone is θe−U . Since the volume of
the free zone is equal to (V − θM) and the volume of the attraction zone is equal to
θM , we have

A = θ(V − vM), AB = θe−UvM, M = A + AB, B = A. (1)

Introduce the notation lim
M→0

U = U0 and lim
M→0

v = v0. Taking into account the asso-

ciation relation
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AB

A · B · γ 2 = const = lim
M→0

AB

A · B
,

we obtain

γ 2 = eU0−U · (1 − Cv + Cve−U )

(1 − Cv)2
v

v0
, (2)

where v0 is a characteristic of the chosen electrolyte ([v] = l/mol). Relation (2) deter-
mines the dependence of the activity coefficient γ on C for an electrolyte with some
v0 if the functions U (v0,C) and v(v0,C) are known. We now turn to the construction
of these functions.

3 Potential of ions interaction in electrolyte

Let us consider the Debye–Hückel approach and make some improvements that are
essential for high concentrations of solutions.

Each ion in a solution is surrounded by a hydrate shell. An ion together with a shell
in this work is called a cluster.

Following the ideas of Debye and Hückel, we study the situation statistically. For
definiteness, consider negative ions. Around each of them, we fix the particle distrib-
ution and then average these distributions. Denote the distance from the center to the
observation point by r . Since in strong electrolytes, the ion energy is insufficient for
destroying the stable parts of the shells, there exists a distance of the closest approach
of ions. We get the result of averaging in the form of a negative ion at the center
(we call it the “central” ion) with a stable hydrate shell of radius a around it and a
continuous distribution of low-density clusters with ions of various signs for r > a.
We calculate the potential for such an “object,” which statistically describes averaged
characteristics of the interaction of ions.

Let C be the concentration of an electrolyte, ψ be the electrostatic potential at a
point of the space, u = qψ

kT < 0, where q is the electron charge, w = W
kT , where W is

the correction to the potential energy due to the change of the energy of the hydrate
shell while moving the positive ion from infinity at the point considered (respectively,
W− is the corresponding correction when moving negative ion). By the Boltzmann
equation, the local density of positive ions for r > a is proportional to C ·e−(u+w) and
the local density of positive ions is proportional to C · eu−w− . Since the normalizing
coefficient is equal to 1, the distribution u(r,C) in the domain a < r < ∞ is described
by the following relations:

1

r2

∂

∂r

(
r2ε

∂u

∂r

)
= χ1C

(
e−(u+w) − eu−w−

)
,

∂u

∂r |r=a
= χ2

εa2 ,

u|r→∞ → 0, (3)

where χ1 and χ2 are known constants: χ1 = 4πq2 N
kT ·103 , χ2 = q2108

kT .
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At low concentrations of electrolytes, in the Debye–Hückel theory, the right-hand
side of Eq. (3) can be linearized, the constant ε is set to be equal to the dielectric
permittivity εw of water, and the change of the energy of the hydrate shell is neglected.
For high concentrations C , we (a) leave the equations nonlinear, (b) take into account
the dependence of the dielectric permittivity ε on the concentration of the electrolyte
and the value of r , and (c) take into account the change of the energy of the hydrate shell.

Since complete experimental data for items (b) and (c) are not available, we specify
the necessary relations based on some well-known ideas.

In reality, a hydrate shell is a complex, ill-defined structure. For example, different
authors give significantly different estimates of its size and the number of water mole-
cules in it. Therefore, we will use a simple model representation for our statistically
defined “object.” We assume that the hydrate shell consists of two parts. One of them,
the central stable part, has radius a. For r < a, water molecules are fixed by the
field, and the local value of the dielectric permittivity in this region is small due to
the saturation of molecule polarization [2]. In the other “surface” part, for r > a, the
shell is relatively unstable, its energy depends on the proximity of other clusters and
the penetration of an “external” ion into this part of the shell.

Consider item (b). It is known that the average dielectric permittivity εav substan-
tially depends on the concentration of an electrolyte. Its decrease compared with εw
can be explained by the presence of domains near the ions where ε is small. Experi-
mental data for εav (see [6]) are adequately described by the relation

εav = εw

1 + kavC
.

The coefficient kav depends on the electrolyte, hence kav = kav(a).
By [2], on the boundary of the stable part of the hydrate shell, the local value of ε

increases up to the average value in the solution out of shells, on the approximate dis-
tance 2 Å (in what follows, we measure all distances in Ångströms). Then we assume
that the local value of ε in the domain r > a is equal to

ε = εw

1 + 1.7e−2(r−a) + k(a)C
(4)

This quantity varies in dilute solutions (for C = 0) on the distance 2 Å near the surface
r = a within the range approximately from 30 to 80.

In problem (3), the potential is calculated, i.e., the work of the displacement of an
ion from infinity to the observation point. Within this displacement, the ion does not
falls in a-neighborhoods of other ions; therefore, the values of ε in these neighbor-
hoods are irrelevant. The average value of ε in the domain r > a is significant; we
denote it by εa . The deviation of this value from εw is defined by the value of ε in the
surface part of the shell. We have

εw

εa
− 1 = 2C · N · 10−27 · 4π

∞∫
a

1.7e2(a−r)r2dr ≈ 0.012a2C.

Therefore, k(a) = 0.012a2.
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Now we turn to item (c), the change of the energy W of the hydrate shell of the
“central” ion due to the approaching to it of an “external” ion from infinity to the point
under consideration at various C .

Let C �= 0 and the space contains ions. We choose a sphere around the “central”
ion lying outside the shell. In the statistically averaged representation, the charge on
it is distributed uniformly over the sphere. As is well known, inside the sphere, such a
charge does not change the field �E . Therefore, the energy of the dipole, which is equal
to �E · �d , also remains unchanged. Therefore, the distributed spatial charge located
outside the shell does not change the energy of the shell.

The dipoles of neighboring ions change the energy of the shell at the short-range
action. In the neighborhood of the negative “central” ion, “external” positive ions pre-
dominate. The surface of the shell of the “central” ion contacts, with some probability
depending on the concentration C , with the surfaces of shells of “external” positive
ions with dipoles located on them and directed toward the shell of the “central” ion.
These dipoles affect the dipoles of the shell of the “central” ion, pulling them from
the “central” ion.

Consider the relationship of the energy of various factors on the boundary of the
shell of the “central” ion. Let C = 0. We denote the radius of the shell by r0. The
energy of the transition of an ion from the shell in a solution is equal to F|r=r0 δr , where
F is the attraction force between the dipole and the shell and δr is a small displacement
required for the separation from the shell. The condition of the dynamical equilibrium
on the boundary of the shell has the form

F|r=r0 δr = Ekin,

where Ekin is the average kinetic energy of a molecule of water. Now let C > 0.
Then, except for the thermal energy, the shell resists the force Fd−d generated by
the dipole–dipole interaction of neighboring shells. The equilibrium condition is as
follows:

F|r=rc δr = Ekin + Fd−dδr,

where rc is the new radius of the shell of the “central” ion. These equilibrium conditions
imply

F|r=rc = F|r=r0 + Fd−d.

Dipole–dipole forces in shells are independent of the radius. Therefore, in expressions
for F|r , we must consider only the change of the ion–dipole component. We obtain

2q2d

εr3
c

= 2q2d

εr3
0

+ 6q2d2

εd4
w

· n(C),

where dw is the diameter of the molecule of water (the distance between the centers of
the neighboring dipoles) and n(C) is the density of distributed dipoles in the statistical
models, or, in other words, the probability of finding of “pulling away” dipoles near
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a dipole on the surface of the shell of the “central” ion, which is defined by the
expression

n(C) = r3
c

r3
w

C N

1027 · kcg,

where rw is the radius of the molecule of water, kc is a parameter characterizing
the increase of the concentration of positive ions near the surface of the negative
“central” ion comparing with the average concentration in the solution (in our estimates
kc = 1.5), and g is a factor reflecting the fact that a dipole in water interacts with several
closest dipoles. By [2], for water g = 2.5; this value was obtained experimentally. As
was noted above, by [2], the change of ε up to the value εw (the dielectric permittivity
of pure water) occurs at the distance approximately 2 Å from the stable part of the
shell. This characterizes the approximate dimensions of the shell since namely the
presence of a shell causes the change of ε. Therefore, for estimates we set rc = a + 2.

Using the values of the fundamental constants and parameters specified above, we
find

1

r3
c

= 1

r3
0

+ k1

r3
c

a6C,

where k1 = 3 · 10−4. If V0 and Vc are the volumes of the shell for C = 0 and for
C > 0, respectively, then we have

Vc = V0

1 + k1Ca6 .

The energy of the dipole–dipole interaction in the shell is approximately proportional
to its volume; therefore, it varies similarly as the concentration C increases.

Now we examine the change of the energy of the “surface” part of the shell when
an ion of opposite sign (to the sign of the “central” ion) penetrates it. In the outer part
of the shell, water molecules are unstable and their dipole moment is unsaturated. If
they were located arbitrarily, then ε = εa . If some of them, owing to the short-range
interaction, form a certain structure, then ε changes in accordance with (4). Thus,
the dipoles acquire an additional energy. An “external” ion, approached at a distance
r to the “central” ion, destroys (in the statistically averaged representation) the dipole
structure in the outer part of the shell lying outside the sphere of radius r and deprives
it of energy supplements. We calculate it.

The average energy of the dipole of the water molecule in the absence of a structure
in the field of the “central” ion is −qd/r2εa ; in the presence of a structure it becomes
−qd/r2ε. Moreover, the energy udip of the dipole–dipole interaction of neighboring
molecules increases. We denote by rw the radius of the water molecule. The change
of udip is equal to

2d2

r3
wεw

(
εw

ε
− εw

εa

)
· K ,
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where K is the coefficient depending on the order of dipoles in the structure of the
shell. Assuming that they are staggered, we obtain K = 6 − 4 · 2−3/2 ≈ 4.5. Thus,
the change of the energy of the water molecule is equal to

δE =−δ
(εw
ε

)
· d

εw

(
q

r2 + 2d K

r3
w

)
, where δ

(εw
ε

)
=

(
εw

ε(r)
− εw

εa

)
= 1.7e2(a−r).

According to the Boltzmann law, the ratio of the probability of finding a dipole in the
structure to the probability of finding it at the same place, but without the inclusion
in the structure is equal to e−δE/kT . Therefore, the probability of transition from the
free state to the structure is equal to e−δE/kT − 1. Find the change of the energy of
the part of the shell outside the sphere of radius r when the structure is destroyed:

W|C=0 = 4πn

∞∫
r

δE(x, a)
(

e−δE(x,a)/kT − 1
)

x2dx,

where n is the concentration of dipoles in water. Calculating the integral, we obtain
W|C=0 ≈ k2e4(a−r), where k2 = 1.5 · 10−13erg. Finally, the expression for the cor-
rection W to the potential energy caused by the change of the energy of the hydrate
shell has the form

W (C, r, a) = k2e4(a−r)

1 + k1Ca6 . (5)

Now we consider the value w− in Eq. (3). As was discussed above, “external” ions
lying outside the shell do not change its energy. The change of the energy is determined
by the partial destruction of the shell (w− > 0) at the short-range interaction, for
r ≈ a–2a . In this region, the electrostatic potential u is a large negative value, which
determines a small probability of the convergence of ions of the same charge. Thus,
the quantity e−w− < 1 in Eq. (3) is multiplied by eu 	 1. Therefore, an inaccuracy in
determination of w− is not essential in the calculation of the solution of problem (3).
Taking this into account, for examining Eq. (3), we can setw− = 0. The admissibility
of this approximation was verified by numerical experiments with different w− in
model (3).

Equations (3)–(5) form a complete model; within the framework of this model, the
function u(C, r, a)was calculated (u depends on a as on a parameter). Figure 1 shows
a typical dependence of the total potential energy φ = qψ + W on r for an “external”
positive ion.

Using the function φ(C, r, a) found by simulation for fixed values C and a, one can
calculate the average energy of ions in the sphere of radius R centered at the “central”
ion. We denote φ

kT by �. By the Boltzmann law, the probability of finding an ion at
some point is equal to Ce−�. For r < a, the energy W has a larger value and hence
e−� ≈ 0. Taking this fact into account, we see that it suffices to calculate the average
energy in the spherical layer a < r < R; it equals
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Fig. 1 Dependence of the total
energy φ = qψ + W on r for
various C

〈�(C, R, a)〉 =
∫ R

a �(C, r, a)e−�(C,r,a)r2dr∫ R
a e−�(C,r,a)r2dr

(6)

In model (2), the size of the attraction zone was assumed to be such that 〈�〉 attains
the minimum value. Therefore, if we find from (6) the value of R for which 〈�〉 is
minimal, we can obtain the radius Rv(C, a) of the attraction zone and the average
value of � in it:

�v(C, a) = 〈�(C, Rv(C, a), a)〉 .

The constructed functions allow us to pass from the characteristic of the electrolyte
by specifying a value of a to the characteristic v0 that occurs in model (2). We denote
the value of Rv for C = 0 by Rv0 , i.e., Rv0 = Rv(0, a). This dependence determines
the inverse function a = a(Rv0); it has the form similar to a linear function. The
volume v of the attraction zone per one mol of the solute is related with Rv by the
relation

v = 4π

3
R3
v · N · 10−27 ≈ 8π

104 R3
v .

We recall that Rv is measured in Ångströms and v in liters per mole. Thus, Rv0 =
7.34v1/3

0 . Finally, we find the relationship between a and v0 in the form of a single-
valued monotonic dependence a = a(v0). After this, we can construct the functions

U (v0,C) = �v (C, a(v0)) and v(v0,C) =
(

Rv[C,a(v0)]
7.34

)3
.

4 Comparison of results of simulation with published data

Model (2), where the values of the functions U (v0,C) and v(v0,C) are determined
based on the use of model (3)–(6), allows the calculation of the activity coefficient of
the electrolyte γ (v0,C). The value of v0 depends on the choice of an electrolyte and
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Fig. 2 Dependence γ (C). Markers show the table data, curves show results of simulation

characterizes it. We compared published data from [5] for various uni-univalent elec-
trolytes in 30 cases with results of numerical simulation by the model described above.
In all cases tested, without exclusions, the model adequately describes the experimen-
tal data. Figure 2 shows typical situations. For illustration we selected electrolytes
whose curves γ (C) are substantially different.

This approach naturally explains the initial falling and subsequent rise of the curves
γ (C). Namely, as (2) shows, these curves are formed under the influence of two major
factors. The value U is negative and decreases in absolute value with increasing C .
From the energetic standpoint, free ions are less profitable to join the association. To
this fact, the factor e−U in Eq. (2) corresponds. As a consequence, the curves γ (C)
initially fall. The second major factor that affects the rise of curvesγ (C) is the reduction
of the free zone (V − vM) as the concentration of the solution increases [the first
Eq. (1)]. Indeed, any process observed in the solution (in this case, the intensity of the
formation of bound pairs AB) is defined by the concentration of ions in the free zone.
This concentration is equal to θ = A

V −vM , whereas the average concentration of free
ions in the whole solution is equal to A/V . Therefore, the effect produced is stronger
than it would be at an average concentration. The apparent concentration—activity—
is greater than the actual average concentration. To this fact, the factor (1 − vC)2 in
the denominator of expression (2) corresponds. Therefore, the further increase of the
concentration C causes the rise of the curve γ (C) (γ ∼ (1−vC)−1). Electrolytes with
small values of v (< 0.05) do not reach the stage of increasing in the range 0 < C < 6.
For other electrolytes, the curve γ (C) initially decreases and then increases.

The value of the activity coefficient γ for moderate values of C (for example,
C = 4mol/l) monotonically changes with the change of v0. Therefore, for the selection
of v0, it suffices to know just one point, for example, the value γ (4). Then we can
calculate γ (y) for all other concentrations. Thus, the proposed model allows one to
calculate the activity coefficients in a wide range, from 0 to several moles per liters,
using minimum pilot information.

Consider the limits of applicability of expression (2). An obvious constraint is the
condition that the total volume of the attraction zones is less than the total volume of the
solution. For evaluation, we consider the constraint C ·v(v0,C) ≤ 0.8. Obviously, the
applicability range C ≤ Clim differs for various substances. For example, we present
the values of Clim for electrolytes that are shown in Fig. 2. Clim ≈ 4 corresponds to
HJ; Clim ≈ 5 to HCl; Clim ≈ 10 to NaCl; Clim ≈ 16 to CsCl.
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The distance between ions of opposite sign in the solution is equal to L(C) = kL
3√C
,

where kL is a constant lying in the range from 7.7 to 9.4, depending on the structure
of the package (cubic, tetrahedral, etc.). Let us see in Fig. 1. Let C be such that L is
approximately equal to rmin. Being located at a distance of rmin, ions of opposite sign
occupy a stable position relative to each other. The electrolyte is in a quasi-crystalline
state. The values of concentrations at which this occurs exceed the values of Clim
specified above.

5 Conclusion

In this paper, we propose a physical model describing the interaction of hydrated ions
in electrolytes. This model allows one to perform a quantitative examination of the
influence of basic physical factors and, based on this, to analyze the behavior of the
activity coefficients of electrolytes in the range from 0 to several moles per liter.
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